Übersichtsarbeiten - OUP 12/2018

Matrixaugmentierte Knochenmarkstimulation
Lösung für die Schwächen der Mikrofrakturierung?Cracking the problems of arthroscopic microfracturing?

18. Gavenis K, Schneider U, Maus U et al.: Cell-free repair of small cartilage defects in the Goettinger minipig: which defect size is possible? Knee Surg Sports Traumatol Arthrosc. 2012; 20: 2307–14

19. Hancock KJ, Westermann RR, Shamrock AG, Duchman KR, Wolf BR, Amendola A: Trends in Knee Articular Cartilage Treatments: An American Board of Orthopaedic Surgery Database Study. J Knee Surg. 2018

20. Hasson F, Keeney S, McKenna H: Research guidelines for the Delphi survey technique. J Adv Nurs. 2000; 32: 1008–15

21. Henrotin Y, Lambert C, Richette P: Importance of synovitis in osteoarthritis: evidence for the use of glycosaminoglycans against synovial inflammation. Semin Arthritis Rheum. 2014; 43: 579–87

22. Hirschmuller A, Baur H, Braun S, Kreuz PC, Sudkamp NP, Niemeyer P: Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med. 2011; 39: 2686–96

23. Hwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J: Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials. 2006; 27 (36): 6015–23

24. Jaiswal PK, Wong K, Khan WS: Current cell-based strategies for knee cartilage injuries. J Stem Cells. 2010; 5: 177–85

25. Jiang X, Huang B, Yang H et al.: TGF-beta1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway. Cell Physiol Biochem. 2017; 42: 2230–41

26. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986; 2: 54–69

27. Khan WS, Johnson DS, Hardingham TE: The potential of stem cells in the treatment of knee cartilage defects. Knee. 2010; 17: 369–74

28. Kreuz PC, Steinwachs MR, Erggelet C et al.: Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006; 14: 1119–25

29. Li S, Niu G, Wu Y et al.: Vitamin D prevents articular cartilage erosion by regulating collagen II turnover through TGF-beta1 in ovariectomized rats. Osteoarthritis Cartilage. 2016; 24: 345–53

30. Lippiello L: Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress. Osteoarthritis Cartilage. 2003; 11: 335–42

31. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T: Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009; 37: 902–8

32. Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Della Villa S: Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther. 2012; 42: 254–73

33. Mithoefer K, Williams RJ 3rd, Warren RF et al.: Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am. 2006; 88 Suppl 1 Pt 2: 294–304

34. Mithoefer K, Williams RJ 3rd, Warren RF et al.: The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005; 87: 1911–20

35. Mroz PJ, Silbert JE: Use of 3H-glucosamine and 35S-sulfate with cultured human chondrocytes to determine the effect of glucosamine concentration on formation of chondroitin sulfate. Arthritis Rheum. 2004; 50: 3574–9

36. Nakatani S, Mano H, Im R, Shimizu J, Wada M: Glucosamine regulates differentiation of a chondrogenic cell line, ATDC5. Biol Pharm Bull. 2007; 30: 433–8

37. Neil KM, Orth MW, Coussens PM, Chan PS, Caron JP: Effects of glucosamine and chondroitin sulfate on mediators of osteoarthritis in cultured equine chondrocytes stimulated by use of recombinant equine interleukin-1beta. Am J Vet Res. 2005; 66: 1861–9

38. Niemeyer P, Andereya S, Angele P et al.: [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group „Tissue Regeneration“ of the German Society of Orthopaedic Surgery and Traumatology (DGOU)]. Z Orthop Unfall. 2013; 151: 38–7

39. Niemeyer P, Becher C, Buhs M et al.: [Significance of Matrix-augmented Bone Marrow Stimulation for Treatment of Cartilage Defects of the Knee: A Consensus Statement of the DGOU Working Group on Tissue Regeneration]. Z Orthop Unfall. 2018

40. Pascual-Garrido C, Angeline ME, Ma R et al.: Low Levels of Vitamin D have a Deleterious Effect on the Articular Cartilage in a Rat Model. HSS J. 2016; 12: 150–7

41. Pot MW, Gonzales VK, Buma P et al.: Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ. 2016;4: e2243

42. Pridie KH: A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br]. 1959; : 618–9

43. Roessler PP, Pfister B, Gesslein M et al.: Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int Orthop. 2015; 39: 2473–9

44. Rogan S, Taeymans J, Hirschmuller A, Niemeyer P, Baur H: [Effect of continuous passive motion for cartilage regenerative surgery – a systematic literature review]. Z Orthop Unfall. 2013; 151: 468–74

SEITE: 1 | 2 | 3 | 4 | 5 | 6