Übersichtsarbeiten - OUP 12/2018

Matrixaugmentierte Knochenmarkstimulation
Lösung für die Schwächen der Mikrofrakturierung?Cracking the problems of arthroscopic microfracturing?

45. Schneider U, Schmidt-Rohlfing B, Gavenis K, Maus U, Mueller-Rath R, Andereya S: A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc. 2011; 19: 2145–52

46. Schuettler KF, Struewer J, Rominger MB, Rexin P, Efe T: Repair of a chondral defect using a cell free scaffold in a young patient – a case report of successful scaffold transformation and colonisation. BMC Surg. 2013; 13: 11

47. Schuttler KF, Schenker H, Theisen C et al.: Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation. Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1270–6

48. Shang XL, Tao HY, Chen SY, Li YX, Hua YH: Clinical and MRI outcomes of HA injection following arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1243–9

49. Shive MS, Stanish WD, McCormack R et al.: BST-CarGel(R) Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial. Cartilage. 2015; 6: 62–72

50. St-Arnaud R, Naja RP: Vitamin D metabolism, cartilage and bone fracture repair. Mol Cell Endocrinol. 2011; 347: 48–54

51. Steadman JR, Rodkey WG, Briggs KK: Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002; 15: 170–6

52. Steadman JR, Rodkey WG, Rodrigo JJ: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001; (391 Suppl): S362–9

53. Suh HJ, Lee H, Min BJ, Jung SU, Jung EY: Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1beta-induced osteoarthritic chondrocytes. Nutr Res Pract. 2016; 10: 569–74

54. Taniguchi S, Ryu J, Seki M, Sumino T, Tokuhashi Y, Esumi M: Long-term oral administration of glucosamine or chondroitin sulfate reduces destruction of cartilage and up-regulation of MMP-3 mRNA in a model of spontaneous osteoarthritis in Hartley guinea pigs. J Orthop Res. 2012; 30: 673–8

55. Valderrabano V, Miska M, Leumann A, Wiewiorski M: Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013; 41: 519–27

56. Volz M, Schaumburger J, Frick H, Grifka J, Anders S: A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop. 2017; 41: 797–804

57. Walther M, Altenberger S, Kriegelstein S, Volkering C, Roser A: Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix. Oper Orthop Traumatol. 2014; 26: 603–10

58. Yamamura K, Ohta Y, Mamoto K, Sugama R, Minoda Y, Nakamura H. Effect of eldecalcitol on articular cartilage through the regulation of transcription factor Erg in a murine model of knee osteoarthritis. Biochem Biophys Res Commun. 2018; 495: 179–84

59. Gao L, Orth P, Cucchiarini M, Madry H: Autologous Matrix-Induced Chondrogenesis. A Systematic Review of the Clinical Evidence. The American Journal of Sports Medicine 2017; 1–10, DOI: 10.1177/0363546517740575

SEITE: 1 | 2 | 3 | 4 | 5 | 6